If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+20x-2464=0
a = 5; b = 20; c = -2464;
Δ = b2-4ac
Δ = 202-4·5·(-2464)
Δ = 49680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49680}=\sqrt{144*345}=\sqrt{144}*\sqrt{345}=12\sqrt{345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{345}}{2*5}=\frac{-20-12\sqrt{345}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{345}}{2*5}=\frac{-20+12\sqrt{345}}{10} $
| 4x+6x+3-x+9=100 | | 20=2*w | | 20=2-w | | 2.6x+6.3=6.82 | | 16.9d=84.5) | | 5h-6=26 | | 25-s=14 | | -12+3y+2y=3 | | 5x-33+9x=9 | | -6x-4=8x+17 | | r=1/660r-4 | | 8=192/(45-x) | | x/3x/8=6/14 | | 72x^2-69x-36=0 | | 7r+6-2r=-19 | | -3z+9z=18 | | y*2+14=50 | | 7776=6^n-1 | | 7776=6^(n-1) | | 10x+6=7x+20 | | 6x^2+5=2x | | x+50=30 | | 0=cx21 | | 2(12x-9)=24x= | | 2x^2-6x-99=7x | | 5a-7=3a-9 | | 19d-16d-d-d=12 | | 9u-7u+2=17 | | x=34.5x5 | | x/0.36=0.6/54 | | n-6.5=1.1n= | | 120-10x=20 |